Function-Based Question Classification for General QA
نویسندگان
چکیده
In contrast with the booming increase of internet data, state-of-art QA (question answering) systems, otherwise, concerned data from specific domains or resources such as search engine snippets, online forums and Wikipedia in a somewhat isolated way. Users may welcome a more general QA system for its capability to answer questions of various sources, integrated from existed specialized sub-QA engines. In this framework, question classification is the primary task. However, the current paradigms of question classification were focused on some specified type of questions, i.e. factoid questions, which are inappropriate for the general QA. In this paper, we propose a new question classification paradigm, which includes a question taxonomy suitable to the general QA and a question classifier based on MLN (Markov logic network), where rule-based methods and statistical methods are unified into a single framework in a fuzzy discriminative learning approach. Experiments show that our method outperforms traditional question classification approaches.
منابع مشابه
Investigating Embedded Question Reuse in Question Answering
The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...
متن کاملTowards Domain Independent Why Text Segment Classification Based on Bag of Function Words
Increased attention has been focused on question answering (QA) technology as next generation search since it improves the usability of information acquisition from web. However, not much research has been conducted on “non-factoid-QA”, especially on Why Question Answering (Why-QA). In this paper, we introduce a machine learning approach to automatically construct a classifier with function wor...
متن کاملDataset and Neural Recurrent Sequence Labeling Model for Open-Domain Factoid Question Answering
While question answering (QA) with neural network, i.e. neural QA, has achieved promising results in recent years, lacking of large scale real-word QA dataset is still a challenge for developing and evaluating neural QA system. To alleviate this problem, we propose a large scale human annotated real-world QA dataset WebQA with more than 42k questions and 556k evidences. As existing neural QA me...
متن کاملA New Statistical Model for Evaluation Interactive Question Answering Systems Using Regression
The development of computer systems and extensive use of information technology in the everyday life of people have just made it more and more important for them to make quick access to information that has received great importance. Increasing the volume of information makes it difficult to manage or control. Thus, some instruments need to be provided to use this information. The QA system is ...
متن کاملA Survey of Text Question Answering Techniques
Question Answering (QA) is a specific type of information retrieval. Given a set of documents, a Question Answering system attempts to find out the correct answer to the question pose in natural language. Question answering is multidisciplinary. It involves information technology, artificial intelligence, natural language processing, knowledge and database management and cognitive science. From...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010